28 research outputs found

    Antisense oligonucleotide induction of the hnRNPA1b isoform affects pre-mRNA splicing of SMN2 in SMA type I fibroblasts

    Get PDF
    Spinal muscular atrophy (SMA) is a severe, debilitating neuromuscular condition characterised by loss of motor neurons and progressive muscle wasting. SMA is caused by a loss of expression of SMN1 that encodes the survival motor neuron (SMN) protein necessary for the survival of motor neurons. Restoration of SMN expression through increased inclusion of SMN2 exon 7 is known to ameliorate symptoms in SMA patients. As a consequence, regulation of pre-mRNA splicing of SMN2 could provide a potential molecular therapy for SMA. In this study, we explored if splice switching antisense oligonucleotides could redirect the splicing repressor hnRNPA1 to the hnRNPA1b isoform and restore SMN expression in fibroblasts from a type I SMA patient. Antisense oligonucleotides (AOs) were designed to promote exon 7b retention in the mature mRNA and induce the hnRNPA1b isoform. RT-PCR and western blot analysis were used to assess and monitor the efficiency of different AO combinations. A combination of AOs targeting multiple silencing motifs in hnRNPA1 pre-mRNA led to robust hnRNPA1b induction, which, in turn, significantly increased expression of full-length SMN (FL-SMN) protein. A combination of PMOs targeting the same motifs also strongly induced hnRNPA1b isoform, but surprisingly SMN2 exon 5 skipping was detected, and the PMO cocktail did not lead to a significant increase in expression of FL-SMN protein. We further performed RNA sequencing to assess the genome-wide effects of hnRNPA1b induction. Some 3244 genes were differentially expressed between the hnRNPA1b-induced and untreated SMA fibroblasts, which are functionally enriched in cell cycle and chromosome segregation processes. RT-PCR analysis demonstrated that expression of the master regulator of these enrichment pathways, MYBL2 and FOXM1B, were reduced in response to PMO treatment. These findings suggested that induction of hnRNPA1b can promote SMN protein expression, but not at sufficient levels to be clinically relevant

    Transcriptional regulation of the ambient temperature response by h2a.z nucleosomes and hsf1 transcription factors in arabidopsis

    Get PDF
    Temperature influences the distribution, range, and phenology of plants. The key transcriptional activators of heat shock response in eukaryotes, the heat shock factors (HSFs), have undergone large-scale gene amplification in plants. While HSFs are central in heat stress responses, their role in the response to ambient temperature changes is less well understood. We show here that the warm ambient temperature transcriptome is dependent upon the HSFA1 clade of Arabidopsis HSFs, which cause a rapid and dynamic eviction of H2A.Z nucleosomes at target genes. A transcriptional cascade results in the activation of multiple downstream stress-responsive transcription factors, triggering large-scale changes to the transcriptome in response to elevated temperature. H2A.Z nucleosomes are enriched at temperature-responsive genes at non-inducible temperature, and thus likely confer inducibility of gene expression and higher responsive dynamics. We propose that the antagonistic effects of H2A.Z and HSF1 provide a mechanism to activate gene expression rapidly and precisely in response to temperature, while preventing leaky transcription in the absence of an activation signal.Biological and Soft Matter Physic

    Interfacing systems biology and synthetic biology

    Get PDF

    Overexpression of holocarboxylase synthetase predicts lymph node metastasis and unfavorable prognosis in breast cancer

    No full text
    BACKGROUND/AIM:Holocarboxylase synthetase (HLCS) catalyzes the specific attachment of biotin onto biotin-dependent carboxylases (BDCs) which play important roles in intermediary metabolism. Previous studies show that BDCs are overexpressed in many cancer types. However, expression of HLCS in cancerous tissues has not been reported. MATERIALS AND METHODS:Immunohistochemistry was used to investigate HLCS expression in breast tissue obtained from 65 Thai patients, and the correlation between its expression and key clinical-pathological parameters was assessed. The role of HLCS in supporting invasion was investigated in HLCS-knockdown MCF-7 cells. RESULTS:Overexpression of HLCS was significantly associated with metastasis of breast cancer cells to other lymph nodes but not the sentinel and axillary lymph nodes - a finding supported in cellular invasion assays using HLCS knockdown cells. Furthermore, overexpression of HLCS reduced survival time of patients with breast cancer. CONCLUSION:HLCS appears to be a prognostic marker for patients with breast cancer.Witchuda Sukjoi, Siraprapa Siritutsoontorn, Pakkanan Chansongkrow, Suppakit Waiwitlikhit, Steven W. Polyak, Malee Warnnissorn ... et al

    Chloroplast Signaling Gates Thermotolerance in Arabidopsis

    No full text
    Temperature is a key environmental variable influencing plant growth and survival. Protection against high temperature stress in eukaryotes is coordinated by heat shock factors (HSFs), transcription factors that activate the expression of protective chaperones such as HEAT SHOCK PROTEIN 70 (HSP70); however, the pathway by which temperature is sensed and integrated with other environmental signals into adaptive responses is not well understood. Plants are exposed to considerable diurnal variation in temperature, and we have found that there is diurnal variation in thermotolerance in Arabidopsis thaliana, with maximal thermotolerance coinciding with higher HSP70 expression during the day. In a forward genetic screen, we identified a key role for the chloroplast in controlling this response, suggesting that light-induced chloroplast signaling plays a key role. Consistent with this, we are able to globally activate binding of HSFA1a to its targets by altering redox status in planta independently of a heat shock
    corecore